top of page

轉型工業4.0的九種新科技

已更新:2021年11月16日

工業4.0主要有九種新科技驅動著製造業轉型工業4.0,而這分別為大數據、雲端科技、自動化、系統整合、物聯網、網路安全、積層製造、擴增實境、以及模擬。而在這九種科技當中,物聯網,或是更精確的說,工業物聯網(Industryial Internet of Things, IIoT),是真正讓所生產機能串連在一起的橋樑,成功串連這些機能以及發揮這九種科技的製造業者將可以重新定義傳統的生產者、供給商、以及消費者的關係,並在生產機能中創建一個生態系統。



供需匹配 Supply / Demand Match

製造業者所遇到的最大的挑戰之一即是供需匹配了,要生產什麼產品?要生產多少數量?什麼時候開始生產?若製造商所得到的答案遠遠的偏差於實際需求時,業者將必須承擔多種嚴重的負面後果。


原材料的不足、臨時增量所導致的成本上升、存貨暴增的運營成本、甚至是存貨不足的商機損失等等,都是製造商所承擔的巨大風險,所以業者在預測需求時都必須極為警慎。竭盡所能地降低高存貨、無存貨、死水金流、達不到既有KPI等等後果的風險。


擁抱轉型工業4.0的製造商透過兩種數位能力以優化供需匹配,其分別為數據驅動的需求預測以及數據驅動的價值設計。

傳統製造商通常是依靠多種統計預測模式以降低需求的不確定性,雖然有許多種統計模型,但概括來講,這些模型即是通過歷史的銷售數據以抓出常見模式,並以此為基準去決定生產量。此類型的模型在面對重複性的模式(Pattern)時,然而,需求並非重複性的模式,


微觀層面來看,需求可能會行銷活動、流行趨勢的改變、競爭者動向、甚至是數位破壞玩家的進入等影響。宏觀層面來看,如颱風、地震等的極端天氣因素,市場失調、失業、金融風暴等的經濟因素,也都會大幅的提升需求的不確定性。


而這就是前兩者的數位能力能夠帶給製造商的優勢了,不僅業者現在能夠抓取更多的數據點(如社群媒體、氣象預報、經濟預測、以及自家設計的儀器等)進入模型當中,同時,業者還能夠讓抓去數據點的監測器(或第三方數據)與生產線做即時溝通。


上市時間 Time To Market​

上市時間在節奏極快的現代時常是製造業能否搶得先機的關鍵,許多業者為了縮短上市時間,跳過了生產過程中的幾個階段、或是降低某些階段的標準以加速生產流程。然而,這不僅會導致產品品質的降低,甚至還可能因為強迫性的效能提高而延長了上市時間。



在整個售後流程中,有四個環節點是製造商能夠通過結合既有數位科技去創造最多價值。從最初的合約管理流程 ( Contract Management ) ,製造商可以思考如何系統性的管理與分析合約內容 ;再來是部件管理 ( Parts Management ),製造商也可以思考如何追蹤部件動向,甚至是遠程的監控部件,並提供客戶預測性維護的服務;


再來還有服務管理 ( Service Management ),製造商可以在進一步的優化服務流程,提供更及時的產品支援以及維護,甚至是通過創新的方式開闢另一道金流;而最後則是物流管理 ( Logistics Management ),製造商也能夠透過逆向物流以加速維修效率以及客戶的等候。


OEM的售後策略- 製造商如何透過售後提高產品獲利與客戶體驗


運營可以從4個層面去計算資產運用,產量、整體設備效率、非規劃的停機時間、以及維修支出,若組織的資產運用率低於70%,時常,業者將失去極大機會將資本放在投資報酬率更高的資產與項目當中,而讓競爭者搶得先機,同時失去了在價值線內進入的優勢。


而在資產運用的層面上,工業4.0帶來完整的解決辦法,路由彈性、製造彈性、遠端監控、以及預測性維護等技術,運營得以創造真正的彈性製造系統,並大幅的增加資產運用率。



資源如何更有效地被應用、以及如何提高生產流程,工業4.0提出了解決辦法。 通過大數據、物聯網、以及自動化等技術,製造商得以從三種層面去思考如何優化資源與流程,其分別為智能能耗、Intelligent Lot、實時產量優化。






Kommentare


bottom of page